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Numerical  solutions a r e  obtained for the equations of a uniform compressible boundary layer with variable 
physical properties in the vic ini ty  of a stagnation point with different principal  curvatures in the presence of 
an injected gas with the same properties as the incident flow. The results of the numerical  solutions are ap-  
proximated for the heat flux in the form of a relat ion that depends on the variat ion of the product of viscosity 
and density ~p across the boundary layer and on the ratio of the principal  radii  of curvature. 

Using the concepts of effect ive diffusion coefficients in a mult icomponent  boundary layer ,  previously intro- 
duced by the author in [1], and the general ized analogy between heat  and mass transfer in the presence of 
inject ion,  together with the numerical  solutions obtained,  it is always possible, even without addit ional  
solutions of the boundary- layer  equations, to derive final formulas for the heat fluxes in a flow of dissociat-  

ing gas of arbitrary chemica l  composit ion,  provided that we make the fundamental  assumption that a l l  re -  
combination reactions take place at the surface. 

By way of example ,  formulas are given for the heat  transfer to the surface of a body from dissociating air,  
regarded as a f ive-component  mixture of the gases O, N, NO, O~, N 2, and from a dissociating mixture o f  
carbon dioxide and molecular  nitrogen of arbitrary composition, regarded as an e leven-component  mixture 
of the gases O, N, C, NO, Cz, O~, N~, CO, CN, Cs, COg. 

In the process of obtaining and analyzing these solutions it was found that ,  in computing the heat flux, a 
mult icomponent  mixture can be replaced with an effect ive binary mixture with a single diffusion coefficient  
only when the former can be divided into two groups of components with different (but s imilar)  diffusion 
properties. In this case the concentrations of one group at the surface must be zero,  while the diffusion 
flows of the second group at the surface are expressible, using the laws of mass conservation of the chemica l  
e lements ,  in terms of the diffusion flows of the first. Then the single effect ive diffusion coefficient  is the 
binary diffusion coefficient  D(A, M), where A relates to one group of components and M to the other. 

In view of the smal l  amount of N O ( e ( N O )  < 0. 05), the diffusion transport of energy in dissociated air 
m a y b e  described with the aid of a single binary diffusion coefficient  D(A, M)(A = O, N, M = O 2, N 2, NO). 

However even in the case of comple te  dissociation into O and C atoms at the outer edge of the boundary 
layer ,  the diffusion transport of energy in dissociated carbon dioxide can not be described accura te ly  

enough by means of a model  of a binary mixture with a single diffusion coeff icient ,  since the diffusion 
properties of the O and C atoms are dist inctly different.  

w 1. Consider the laminar  boundary layer in the neighborhood of a double curvature stagnation point when a 
body is p laced in a steady flow of a compressible perfect gas. In part icular ,  this is essential ly the problem of the bound- 

ary layer in the v ic in i ty  of the stagnation point of an axisymmetr ic  body moving at an angle of a t tack,  i f  we take co-  
ordinates along the lines of curvature of the surface as x and z,  and direct the y axis along the normal to this surface 
(Fig. 1), the system of equations of the boundary layer will  be 

0 0 0 

/3Ue\ 

~ G--p = 0 (1 .3 )  ay 
p(uOw Ow 0 Ow (OWe) 

(o,, o,, o,,) 
o u-gd+vW+w-5-; = W  N 

p - .  p R T  (1 .6 )  

where u, v, w, are the projections of the ve loc i ty  vector on the x, y, and z axes, p pressure, p density, T temperature,  X 
heat  conductivi ty,  # viscosity, Ue, We veloci ty  components of the inviscid flow in the x and z directions,  respect ively,  
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and Cp the specific heat capaci ty  of the gas at constant pressure. 

In deriving this system of equations,  apart from the usual assumptions of boundary layer theory, we made cer ta in  
s impl i fy ing assumptions connected with the fact that the flow is investigated ctos~ to l-he stagnalion point : 1 ) small  tcrm~ 

associated with the dissipation and act ion of pressure forces were dropped from theenergyeqt~arion (1. ,5); 2) in  Eqs. (1 .2)  

and (1 .4)  we used the reIation 
'~ 2 - 2  P~ Pe + '/'~ (3.~ x~ ~ ,)z " ) = c.nst. 

With the same assumptions, the boundary condit ions for system (1 .1 ) - (1 .  g) in the presence of in jec t ion  independent  

of the coordinates x and z will be 

u :  U e =  ~ x ,  w = ~t/'e = ~3zz, h ~- h ,  when y--* c.~ , 

u : u; : 0, v = v 0 > 0, h = h0 when y - -  0 . 

(1 . ? )  

w 2. We shall  seek a solution of the boundary problem ( 1 . 1 ) - ( 1 . 8 )  in the form: 

p, ,= - r ,~ (~ )  ls(~)+,~(n)], h=hoO('n) (2.1~ 
/ 1 / 2 71 

ffxle " P P'e Z - -  FP 

where the subscript 0 relates to condit ions at the body surface, and the subscript e to condit ions at the outer edge of the 
boundary layer.  The cont inui ty  equat ion is then iden t i ca l ly  satisfied. Subst i tut ing ( 2 . 1 )  in (1 .2) ,  (1 .4) ,  (1 .5)  and 

boundary condit ions (1 .7) ,  (1 .8) ,  we get: 

(l/")' -F  (1 + ~P) 1" = 1,2 _ O, l = i~pll~op0 

(zr + (i  + m) r  = ~ ' : - -  k:0, k = ~ , 1 ~  

o' + ( / + ~ ) o '  = o, '~ = -2-  

~< o, o (o) - -  Oo, 1' (o) = ~'  (o) = o (~  = / (o) + g) (o) 

t ' ( ~ ) -  o ( o o ) =  l ,  r  = k .  

(2.~) 
(2.s) 

( 2 . 4 )  

poVo "~ , (2 .5 )  

(2.6) 

a system of e ighth-order  ordinary di f ferent ia l  equations ( 2 . 2 ) - ( 2 . 4 ) w i t h  a fami ly  of boundary condit ions (2 .5) .  t towever,  
it is easy to see that boundary problem ( 2 . 2 ) - ( 2 . 5 )  permits the following o n e - p a r a m e t e r  group of t ransformat ions:  

/ - ~  / + A, tp-->cp-- A ( 2.7) 

which enables  us to reduce the order of system ( 2 . 2 ) - ( 2 . 4 )  by one.  For this purpose we int roduce the fol lowing funct ions:  

A (n) = Y (n), A (n) = / "  (n), tp~ (n) = ~p' (n), ~ (n) = r  (n) 
e~ (n) = e (n), e~ (n) = o' (n), !, (n) - 1 (n) + so (n) (2. s) 

Then  problem (2. 2 ) - (2 .  6) can  be reduced to a basic system of seven th -o rde r  ordinary dif-  

ferent ia l  equations with a f ami ly  of boundary condit ions ( o  = const) 

A' = A,  A = l - '  [/,~ - -  0, - -  (l' + q)) A1 

q)l' ~ ~2, 

02 ' = - -  l - I  ( l '  @ ~ ) )  02, ~1 ) '  = J t  @ q?l 

A (o) = qo, (o) = o, ,t~ (o) = o~ ~< o, 0~ (o) = Oo 
/ ,  (oo) _- o~ (oo) = t ,  qh (oo) = k 

(2.9) 

Fig. 1. (2.10) 

The case k : 0 corresponds to flow near a s tagnat ion l ine (p lane  case) and then r = 0; when k : 1 we get flow near 
a s tagnat ion point (ax isymmerr ic  case) and then f -= co . If the coordinate  x corresponds to the greater  pr incipal  curvature,  

then 0 -<k -< 1. 

The problem ( 2 . 2 ) - ( 2 . 6 )  has been  formula ted  and n u m e r i c a l l y  solved by I]owarth [2]  for 00 = 1 ( incompress ib le  

flow) and l = 1,c~ = 0. Reshotko [3] has ana lyzed  the problem for (% << I and l = 1, c~ = 0, when the right sides of 

Eqs. (2 .2)  and (2 .3 )  can be neglected  and Blasius equations are obta ined for the functions [ 1 / I  4- k ~ ep V t  -t- k .  We 

have numer i ca l l y  integrated the more genera l  problem (2 .9) ,  (2 .10)  on a BESM -2 computer ,  using tlne standard program 

for solving systems of ordinary di f ferent ia l  equat ions by the Adams ~ncthod with au tomat ic  se lec t ion  of the inc rement  to 

a given accuracy .  In the process of solving the problem,  the parameters  h '  (0), ~p~' (0), 02 (0) were selected so as to 
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satisfy the conditions at infinity. The accuracy achieved was 10 -4. The computations were taken to ~ = ~ = 4. The 
choice of parameters was automated. Calculations showed that for ~oo = 4 a l l the  functions go out to their asymptotics, 

~1~ = 3 4 6 8 

/ " ( 0 ) = 0 . 5 5 6 4 1 7 1 4  0.55641022 0.556 4i0 t8 0.55641014 
]" (0) ----~ 0.249 354 88 0.249 352 27 O. 249 352 22 O. 249 352 t8 
O' (0) ---~ 0.333 582 60 0.333 571 21 0.333 57t 20 0.333 571 18 

Computations were performed for l = 1 and for the function l -= gP/~0P0; the viscosity coefficient g was calculated 
from Sutherland's formula. The parameters k, 00, o, s = S /Te ,  where S is Sutherland's constant, were varied. 

Altogether about 200 variants were analyzed. The results are given in Tables I and 2. From these tables it follows 
that the dependence of 0'(0) on k is almost linear. 

TABLE 1 

0 

- -0 .5  

0.1 

t.( 

).~ 

t.C 

0.5 

i .0  

0 
0.2[ 
0.5( 
0.7~ 
t . 0  

0 
0.2[ 
0.5( 
0.7~ 
t . 0  

0 
0.25 
0.5( 
0.75 
t .0  

0 
0.25 
0.50 
0.75 
t .0  

0 
0.25 
0.50 
0.75 
t . 0  

0 
0.25 
0.50 
9.75 
1.0 

).25 
).50 
).75 
t.O 
) 
).25 
).50 
).75 
..0 

L25 
L50 
~.75 
.0 

/ = t ;  a=0.7!, ~ 0 . 7  

I" (0) 

= 0 . 7 1  ~ = t 

0.6039 0.64q9 
0.6565 0.6945 
0.7008 0.7422 
0.7433 0.7%4 
0.7837 0.8227 

0.9369 0.9547 
0.9652 0.9q72 
0.9957 t.0565 
1.0271 1.0413 
t.0587 t.0761 

t.2326 t.2326 
t.2476 t.2476 
1.2669 1.2669 
1.2~87 1.2837 
1.3i19 t.3119 

0.29S5 0.30~9 
0.3439 0.353t 
0.3%4 0.3q12 
0.4235 0.4403 
0.4624 0.4816 

0.6614 0.6669 
0.6~38 0.6q96 
0.7095 0.7t66 
0.7374 0.7a56 
0.7662 0.7753 

0.9692 0.9~92 
0.9796 0.9796 
0.9950 0.9950 
1.0135 1.0134 
t.0335 1.0339 

0.0794 0.0576 
0.12029 0.09953 
0.t429 0.12612 
0. t7t4 0.t654 
0.2030 0.t966 

0.4555 0.4520 
0.470l 0.4663 
0.4873 0.4849 
0.50~2 0.5074 
0.5312 0.5318 

0.7566 0.7566 
0.7625 0.7625 
0.7733 0.7733 
0.7872 0.7872 
0.8035 0.8035 

~" (0) 

~ =0.71 a = t  

0] 0 
0.t459 0.t507 
0.3235 0.3478 
0.5423 0.6507 
0.7837 0.8227 

0 0 
0.1751 0.1771 
0.4176 0.4453 
0.7147 0.753t 
t.0587 1.076t 

0 0 
0.2013 0.2013 
0.4990 0.4990 
0.8732 0.8732 
t .31t9 1.3t19 

0 0 
0.06941 0.07103 
0.1717 0.t772 
0.3036 0.3i51 
0.4624 0.48t6 

0 0 
0.t034 0.t244 
0.2728 0.2757 
0.49~2 0.5018 
0.7~62 0.7753 

0 0 
0.1319 0.13t9 
0.3603 0.3603 
0.6649 0.6649 
1.0339 t.0339 

0 0 
0.01974 0.t727 
0.05307 0.05240 
0.1186 0.1116 
0.2030 0.1966 

0 0 
0.05373 0.05347 
0.1650 0. t649 
0.3260 0.3257 
0.53t2 0.5318 

0 0 
0.03149 0.0~149 
0.2526 0.2526 
0.4963 0.4968 
0,8035 0.8035 

The derivative of the dimensionless temperature (enthatpy) 0 ' (0) ,  required for 

proximated, on the basis of these calculations, in the form: 

g' (0) _ 0.570 (t -t- 0.34k) z-~176176176176 -t- 0.67 a 
ale l/, lel/, 

a = 0.71 

0.439t 
0.4861 
0.5292 
0.5703 
0.6093 

0.2362 
0.2578 
0.2793 
0.3005 
0.32t0 

0 
0 
0 
0 
0 

0.2117 
0.2555 
0.2936 
0.33t2 
0.3686 

0.1303 
0.t490 
0.1632 
0.1880 
0.2076 

0 
0 
0 
0 
0 

0.0544 
0.09165 
0. t t17 
0.t379 
0.1676 

0.05577 
0.06957 
0.08312 
0.09~93 
0.t156 

0 
0 
0 
0 
0 

e' (0) 

~ = i  

0.5067 
0.5578 
0.6006 
0.6561 
0.6919 

0.27t0 
0.2920 
0.3220 
0.3675 
0.3666 

0 
0 
0 
0 
0 

0.2033 
0.2481 
0.2917 
0.3355 
0.3779 

0.1290 
0..1484 
0.1699 
0.192I 
0.2144 

0 
0 
0 
0 
0 

0.0258 
0.05402 
0.07362 
0.1007 
0.t320 

0.0413 
0.05279 
0.0667 
0.08303 
O. t002 

0 
0 
0 
0 
0 

computing the heat flux, can be ap- 

(t + 0.20=) (2.11) 
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(2.11 
O' (0) 0,7 ~< ~ < i . cont, ) 

g '  ( 0 )  - -  1 - -  Oo ' 

Note that a more exact approximation of the last (secOnd degree with respect to c~) term of (2.11) gives in the plane 
case: 0. 213a for o = 0.7 and 0.303a for c~ = 1. Therefore formula (2.11)  gives more accurate values for o close to 0.7. 
In general, formula (2. 11) gives a deviation of not more than 3-4~ from the numerical  solutions for [a] < 0, 5 and 

@0 > 0 . 3 - 0 , 5 .  For - a  ~ 1 and e 0 ,,, 0.1 the discrepancy may amount to 10%. 

w 3. Us ing  the resuks of the precedingsection and the concept of effective coefficients of diffusion in a mul t i -  
component mixture, together with the general{zed analogy between heat and mass transfer coefficients [1], it is possible 
to construct a method of deriving formulas for the specific heat fluxes from a dissociated frozen boundary layer to an 

ideally catalytic surface when a body is exposed to a flow of gas of arbitrary chemical  composition with injection of a 
gas with properties close to those of the incident flow. 

TABLE 2 

- -0 .5  

oo 

0.05 

0.5 

i.O 

0.05 

0.5 

i 

0. O~ 

0.5 

t . 0  

s = 0.2 

0.6908 
0.7374 
0.783t 
0.8269 
0.8688 

0 .9 i t4  
0.937t 
0.9655 
0.9949 
t.0244 

1.2326 
1.2476 
t.2668 
t.2886 
1.312 

0.3976 
0.4327 
0.4728 
0.5138 
0.5540 

0.6442 
0.6628 
0.6863 
0.7t t8  
0.7384 

0.9692 
0.9797 
0.9950 
t '0t358 
1.03317 

0.1882 
0.2054 
0.2308 
0.2619 
0.2955 

0.4482 
0.4577 
0.4729 
0.49t6 
0.5123 

0.7567 
0.7626 
0.7733 
0.7873 
0.8035 

l ~ l ,  a = 0.7i 

t" (0) v" (0) O' (0) 

s = 0 . 0 2  s ~ 0 . 2  

0 
0.1588 
0.3607 
0.5988 
0.8688 

0 
O. 1684 
0.4029 
0.6908 
i.0244 

0 
0.2012 
0.4990 
0.8732 
1 .3 i2  

0 
0.08362 
0.2068 
0.3647 
0.5540 

0 
0.0982 
0.26i2 
0.4777 
0.7384 

0 
0.1320 
0.3603 
0.6650 
t.03317 

0 
0.03209 
0.09i34 
0.i792 
0.2955 

0 
0.05065 
0.i578 
0.3135 
0.5123 

0 
0.08162 
0.2526 
0.4960 
0.8035 

s : 0.02 

0 
0.i028 
0.2346 
0.3908 
0.5684 

0 
0.163t 
0.39i0 
0.67ii  
0.9961 

0 
0.2012 
0,4990 
0.8732 
1.3i2 

0 
0.03608 
0.09704 
O.i810 
0.2846 

0 
O, 09392 
0,2517 
0,46i2 

0 ,7 i52  

0 
0,t320 
0,3603 
0,6650 
1,03317 

0 
0.0i644 
0.05173 
0.i066 
0.1798 

0 
0.0483i 
0.1520 
0.3034 
0.4967 

0 
0.08162 
0.2526 
0.4960 
0.8035 

s = 0.2 

0.4455 
0.4908 
0.5347 
0.5764 
0.6159 

0.2255 
0.2455 
0.2662 
0.2865 
0.3060 

0 
0 
0 
0 
0 

0.2459 
0.2783 
0,3157 
0.3542 
0.3920 

0.1231 
0.i387 
0.i5698 
0.i759 
0,i946 

0 
0 
0 
0 
0 

0.1077 
0.i225 
0.i449 
0.i7297 
0.204i 

0.0538i 
0.06229 
0.075101 
0.09007 
0.t059 

0 
0 
0 
0 
0 

0.4583 
0.4867 
0.5i49 
0.542t 
0.5684 

0.8898 
0.9138 
0.9404 
0.9681 
0.996i 

i.2326 
1.2476 
t.2668 
1.2886 
i.312 

0.i950 
0.2150 
0.2380 
0.26t4 
0.2846 

0.6284 
0.6451 
0,6667 
0,6904 
0.7152 

0.9692 
0.9797 
0.9950 
i.01358 
i.03317 

0.1134 
0.t247 
0.14t5 
0.t604 
0.i798 

0.4395 
0.4477 
0.4612 
0.4780 
0.4967 

0.7567 
0.7626 
0.7733 
0.7873 
0.8035 

8 ~ 0,02 

0.2836 
0 .3i2i  
0.3398 
0.3662 
0.3913 

0.2i7t  
0,2363 
0.266i 
0.2756 
0,2944 

0 
0 
0 
0 
0 

0 . 0 9 7 0 i  
0.i173 
0.i400 
0.i630 
0.i862 

0 . t i58  
0.1307 
0.i483 
0.1664 
O. 1844 

0 
0 
0 
0 
0 

O. 04298 
0.05365 
0.07007 
0.08882 
0.i082 

0.04893 
0.05692 
0.0690i 
0.08323 
0.09821 

0 
0 
0 
0 
0 

w 3, 1. Consider the case where there is no dissociation in the flow. Then, using (2. 1), the local  specific heat 

flux to the surface of the body will be 

q -- s OT _ g;(O) I/~x~,p, (h, -- ho) (3. I) 
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where the value g' (0) must be taken from (2.11).  

w 3. 2. We shall  find the heat  flux for a body in a flow of air which at the outer edge of the boundary layer takes 
the form of a f ive-component  mixture of the dissociation products, O, N, NO, O 2, N z. In order to he able to use the re-  
suits of the preceding calculat ions,  we shall assume that the reactions in the boundary l aye r  are frozen, while at the 
surface they are infini tely fast, i. e . ,  the surface is an i dea l  catalyst .  This l imi ta t ion  has.only a slight effect on the heat  
flux [4], if the general ized Lewis-Semenov numbers are not very different from unity (0. 5 < Li < 2). For mixtures c o m -  
posed of the chemica l  e lements  O, N, C, Li " 0. 8-1 .5 .  The boundary conditions for the components, following from 

the condition of conservation of O and N at the surface, will  be 

N ( 3 . 2 )  ~_j raur [pv (% %(I)) .~_ ik]o_. 0 (l = O ,  N), I i - -  ptVl 
k = l  

where I. is the mass diffusion flow of the i - th  component along the normal to the surface, V i is the diffusion rate Pi, ci 
t 

are the density and mass concentration of the i - th  component,  m l k  is the fract ionof e lement  l in component k by 
weight, the subscript 0 denotes conditions at the surface on the boundary layer side, and the superscript (1) conditions at 

the surface on the body side, and N is the number of components.  

If the surface is maintained at a temperature below the dissociation threshold for a given pressure, then 

co ( 0 )  = co ( N )  = co ( N O )  - -  0 ( 3 . 3 )  

where c0(O) is the concentration of the e lement  0 at the surface, and so on. Note that conditions (3.2)  are dependent by 

virtue of the identi t ies:  

N N (3.4) 
~, %=1, E Ik =~ 
k=l /r 

At the surface we get the recombinat ion reactions 

2 0 2  02 d_ Q (O2), Q (0~) = tt7973 c a l / m o l e  , 

2N ~ N2 + Q (N2), Q (N..) --= 225072 c a l / m o l e ,  (3 .5)  

O + N ~. NO + Q (NO), Q(NO)-- 150043 c a l / m o l e .  

Since for five components there are two elements ,  three specific enthalpies of the components can be expressed in 

terms of two independent enthalpies and the heats of react ion (3.5);  for example ,  

~(N2) 
Q (02) i, (N) - - h  (N2) + --(N2) h (0) = h (Oz) + ~ (0,~) ' 

ra (0) m (N) Q (0,,) O (Nz) O (NO) 
a(NO) m(~)h(O~) ~-~((Nd~h(r~) t- zm(NO) + 2m(r~o) ,n(r~o) (3.6) 

where m(O) is the molecular  weight of the e lement  O, and so on. Then, using (3 .2 ) - (3 .5 ) ,  the specific heat flux to 

the surface for in ject ion of 0~ and N 2 may be expressed in the form 

N N OT 
= - ) ]  + ck(1 ) ) ]o -  (ho- h"" = ( 

~-i l c = ~  (3.7) 
( "~ ohT1 Q(02) Q(N2) Q(02) , Q(N2) Q ( N O ) ]  

=k'-~p -~-/o---~(Oo~ I(O)-- ~(N2) I(N)--[ 2m(NO) -I- 2~(NO) m ( - ~  j I ( N O )  

where h T is the enthalpy of the idea l  gas state of the mixture,  i. e . ,  dh T = cpdT, c i is the mass concentrat ion of the i-th 
component ,  h i is the specif ic  enthalpy of the i - t h  component,  including its heat of formation,  h 0 is the enthalpy of the 

mixture,  and ~(1) the enthalpy of the injected mixture.  

It is easy to see that if the heat capaci t ies  of the components are s imilar ,  which is true of a dissociating gas, the 

function h T satisfies Eq. (1 .5) .  Therefore 

where g' (0)~-~le -1/' is taken from the numer ica l  solution or formula (2.11).  

In order to compute the heat flux ( 3 . 7 ) d u e  to the diffusion of the dissociation products of a i r  and their  recombina-  

t ion at the surface, it is necessary to solve,  joint ly with system ( 2 . 2 ) - ( 2 . 4 ) ,  the diffusion equations of the components,  

which in the variables of (2 .1)  are written in the form: 
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(lSr + ( /4-  (p) c( = O, S i = (~ .~) pD~ 

where the effect ive diffusion coefficients D i are found from the equations [1]: 

( ) N N ( e  i Ij c t l k )  N :r 5 c i Ij vej 

D i ~ cj ]i Dkj \ cj I i W I i /  l :=t  / f= l  j = l  
(3. 1 O) 

[ Ie rex  i is the molar concentration,  and Dij the binary diffusion coeff icient .  If we use t hegene ra l i zdd  analogy between 
the processes of heat  and mass transfer in a mul t icomponent  boundary layer in the presence of inject ion [1.5],  it is suffi- 
cient to be able to compute the coefficients D i at the surface. In fact ,  the general ized analogy between heat  and mass 
transfer may be written in the form [1, 5]: 

"~-Y lo'f = :  cie - -  ci~ Li  = 
J" --- - - - -  ~ W = [ to m beT - -  ho T 

(3.11) 

where 

m = 0 . 6  for a = 0 ,  0 . 2 5 ~ L i n ~ 5 ,  
m = l  for - -  ~ --= 0 2 - -  0.6, 0 . 3 < L i o < 3 ,  
m-----2 for - - a ~ t ,  0 . 6 < L i 0  < t . 4 .  

Then, with (3. ,q) and (3. ] 1), expression (3 ,7)  transforms to 
~' (o) { 

q =  K ~  ~ he--ho-t- %(O)tLm (O) - llo Q(C~2) m (O~) 4- 

where 

Q(N2) [2m_Q (O2)  Q(N~) + c e ( N )  [ L m ( N ) - - t ] ~  4 - c e ( N O ) [ L m ( N O ) - t ]  (NO) 4- 2m (NO) 

h e = he T "@ hd 

2 (NO)I[ 
m (NO)]] (3.12) 

(a. is) 

0 (02) c). (N2) V Q (02) (2 (N~) Q (NO) 1 
h d = % (0) --~(O~_,} ~- % (N)~n. ( -~ ) -  4- ce (NO) [ ~ 6 ) -  4- ~ ) -  - -  m. (no )~ ,  = 

= 3686% (O) 4- 8038% (N) -b 7t6 c e (NO), [hd] --- ca i /g .  

(s. 14) 

Physically,  h e represents the to ta l  en tha lpy  of the mixture at the outer edge of the boundary layer (stagnation en- 
thalpy), and h d the dissociation energy of a unit mass of air. In order to compute the general ized Lewis-Semenov numbers 
Li0 = (pc .Di / ) , )0  in (3 .32) ,  it is necessary to know the effect ive diffusion coefficients at the surface. From (3 .10) ,  using 

F 
boundary conditions ( 3 . 3 ) ,  we at once get:  

t ) x (02) x (Ne) 
~ (  o=  D (i, o~) ~- '5 (i, N2) (i =: O, N, NO) .  

Hence, if,  for s impl ic i ty ,  we drop the subscript 0, at the surface we have:  

D (i, 02) 
Dt--  I 4- [D (i, 02)]D (i, N2)--  i]  z (N2) (i = o ,  N, NO). (3.15) 

For two given pairs of components the ratios of the binary diffusion coefficients in ( 3 . 1 5 )  depend only on the t empera -  

ture, since on the basis of the kinetic  theory of gases [6] 

__Di_j _ ]P t / ,hi @ t/m) (6k 4- 6t)= fa(l't)* ('C/a) k*T 
, T ; j  - -  - -  ( 3 . 1 6 )  

Dill --- V t,/tttk @ l/lnl (6i 4- 6j) 2 a ( l ' l ) *  ('t'/j) V g - 7 ~  

where o i is the distance between molecules  for which the  interact ion energy is zero, e i is the absolute value of the max i -  
mum energy of a t t ract ion,  k* is Boltzmann's constant,  and fa (1'1)* (zij) is the mean reduced coll ision cross section.  Since 

the function c~ (1'1)* is only sl ightly tempera ture-dependent  [6], f o r  two given pairs of components,  ratio (3. 16) is prac-  

t i ca l ly  unaffected by the tempera ture .  In fact ,  from the tables given in [8], we have for 500, 1000, and 2000~ re-  

spec t ive ly :  
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D (O, 03) 
D (O, N..) : 1.038, t.038, 1.040; 

D (N, 03) 
D (N, N~) --i .035; t.043, !.04t; 

D (NO, 03) 
D (NO, N~) ~- 0.99i, 1.020, 1.022 

Hence for tile same surface temperatures 

D (N, 03) 
D (O, 02) --  1.007, i.006, t.006 ; 

D (NO, 03) 
D (N, O2) = 0.709, 0.7i6, 0.7i6 ; 

(3.17) 

L (N) .D (N) I':007 l~ q- 0.038x (N~) 
L-TN = ~(o) - i +0.035~(N~) ' 

L (N) i + 0.038x (N2) : L (N) i < 0.040x (N,) 
L (0) ----- i.00~ i -~- 0.043x (512) ' 'L ( 0 ) ' =  1.006 i + 0.04ix (Nz) ' (3.1a) 

i , e . ,  the generalized Lewis-Semenov numbers L(O) and L(N) differ by not more than 1%. Therefore we take 

pcpD(N'N2)[tq_{D(N'N2) t )  x (O2)]-1= 
L (0) = L (N) =L (A)= E \D (N, 0~) -- 

pcpD (N, N3) 
= L (N, N2). (3.19) - -  L [1 - -  0.040z (O2)1 

Then, using the data of [7], we get L(A) = 1.315 (500~ 1.370 (1O00~ 1.485 (2000~ It is interesting to note that 
in view of the similarity of the diffusion properties of the molecules Oz and N 2, separation of the composition of the in- 
cident flow at the surface of the body [1] has practically no effect on the values of L(A) at the surface, since 0. O40x(O~) 

~ O. 01. 
Finally, at 500, I000, and 2000~ respectively, we have: 

L (NO) D (NO) I + 0,035z (N2) 
Z (A-----~ "~- D (N~ -- 0.709 i --  0.009x (N~) 

L (NO) t + 0.043x (N..,) 
L (A) - -  0.716 t -}- 0.~020z (Ne~ ~ 0.73 

L (NO) 1 -I- 0.0.(dz (N~) 
L (A) .... 0.7t6 I -~-~ 0.02.x" (N,.,) N0.73 

0.73 

(3.20) 

and the heat flux (3.12) can be written in the form: 

. r ~ -  g" (0) 
q = gPxl~epe ~ { h e -  ho -}- (L(A)rn __ I) h d -- 716% (NO) L m (A) (! - -  0.73m)} �9 (3.21) 

The last term in (3.21), proportional to the concentration of NO at the outer edge of the boundary layer, is less than 
1% of the remaining terms, since in all cases c(NO) < 0.05. Therefore, although L0(NO) is considerably different from 

L(A) [cf. (3. 20)], the assumption that the processes of diffusion in dissociated air can be described with the aid of a single 
coefficient of binary diffusion D(A, M)and thus with the aid of a single Lewis-Semenov number L(A), as for example in 
[4, 9], does not lead to serious errors. Note that the appearance of nitric oxide reduces the diffusion energy transport effect 
[cf. (3. 21)], since the heavier NO particles diffuse more slowly than the O and N atoms [D(NO) < D(A)]. Thus, of the 
ten binary diffusion coefficients determining the diffusion processes in the five-component boundary layer of dissociated 
air, by virtue of boundary conditions (3.3) and the asymptotic dependence of the derivatives on the concentrations at the 
surface, the mass transfer processes depend on only seven: D (0, 02), D (0, NJ ,  D (N, 02),D (N, N2), D(NO, 03) , 
D(NO, N,], D (02, NJ.  Moreover, the coefficient D(O z, N2) drops out by virtue of boundary conditions (3.2).  Of the re- 
maining six binary diffusion coefficients only two: D (A, M) and D (M, M) are essentially different, and these enter into 
the final expression for the heat flux (3.21).  Since c (NO) << 1, in practice the diffusion heat transfer processes in five- 
component air are determined by the single binary diffusion coefficient D (A, M). In the presence of additional components 
with diffusion properties similar to those of air molecules, when boundary conditions (3.2)  are modified, we get a signifi- 
cant dependence on the binary diffusion coefficient D (M, M) [5]. 

w 3. 3 Now let us consider the more complicated case of a body in a flow consisting of a mixture of CO2 and molec- 
ular nitrogen in an arbitrary ratio. At sufficiently high speeds in such an atmosphere, on passing through the shock wave 
formed in front of the body, the flow dissociates and gives an eleven-component mixture of  the dissociation products and 
starting components: O, N, C, O2, N2, NO, C 2, C 3, CO, CN, CO 2. In this case, we can take as the independent reactions, 
for example: 
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20 ~ 02 + Q (02), 
2N ~ N+ + Q (N+), 

0 + N ~ NO+ Q (NO), 
2C~-_Ct -}-Q (C2), 

Q (02) = t17 973; 
Q (Ns) = 225 072; 
Q (NO)-- 150 043; 
Q (C2) = 143170; 

3C~C3 + Q(Ca), Q(Ca) =320755;  
C + O ~ C O + Q ( C O ) ,  Q(CO) =255790 ;  
C + N~_ CN + Q (CN), Q (CN) = 194 121 ; 
C +02 ~ C02 + Q (CQ), Q (c02) -- 263 570, (3.22) 

where the heats of reaction Q are measured in cal/mole. Since these eleven components are formed by three chemical 
eler~ents, the partial specific enthalpies of eight of them can be expressed in terms of those of the other three [e. g.,  
h(Os), h(Ns), and h(COs)] and the heats of reaction (3.22) as follows: 

Q(N+) Q (02) h (N) ~--- h (N2) + - -  (N2) h (0) = h (02) + m (02) ' 

m ( 0 )  m (N) Q (02) Q (N2) Q (NO) 
h(NO)=r~-(N-~)h(Os)+~h (Ns)+ 2re(NO) ~- 2re(NO) re(NO) 

m (0)  m (C02) q (C02) Q (02) Q (CO) 
h (C0) = - -  ~ h (02) -[- m ~ h (C02) -}- m (C0) -}- 2m (CO) m (CO) 

m (02) ~ m (C02) ~ (N) 
h(CN)=-- ~ (-~-~) - (02) -l- ra (CN'----'~ h (CO~) + ~ h (Ns) -Jr- 

Q(COs) Q (N+) Q (CN) 
-4 + - -  m (CN) 2m (CN) m (CN) 

m (02) 
h (c) = - -  m (c----y- h (02) + - -  

m (02) 
h (c~) = - -  m (c-----)- h (o+) + - -  

m (02) m (C02) 
h (C3) = - -  ~ - ~  h (02) + ~ h (C02) + 

m (c02) Q (Cos) 
m(C~ h(CO+)+ re(C) 

m (CO~) Q (co,,) 
re(C) h ( C O + ) +  r e ( c )  

Q (co2) 
,',+ (c) 

Q (C2) 
m (C~) 
Q (C~) 
m (Cs) " 

(3.28) 

By virtue of the boundary conditions 

N 

talk [pv (% --  %(~)) -}- I~]0 = 0, l --== O, N, C (3.24) 
k=2  

(c0o=0,  (Ii)o @ 0, i =/- N+, CO2 (8.25) 

and relations (3.23), in the presence of heterogeneous recombination reactions of the dissociation products of the incident 
flow and the injection of N 2 and CO 2 gases the specific heat flux at the surface may be represented in the form: 

N 
q (L OT 

= - - 

,k=1 

+N Z, Oh r 0 Q (0+) 

/r 

-- I (N) (N+-~-)- 2m (NO~ + 2m (NO) m (NO) -- 

m (CO) (CO) (CO) _] --  I , Q (CO+) Q (Ns) 

- -  I (C) q (co2) 
m (c) 

Q (CN) 1 
m (CN) ] 

[ Q (co+) (c21 Q (co2) _ (c+) ] 
I (C2) 1 m (C) (Ca) J" (C2) m 

(3.26) 

Using (3.11) and (3.8) and introducing the heat of dissociation of unit mass of the external flow 

Q (o+> , , ,  Q (N++ (o+> <+ (N,,> 
h a = c e ( O ) ~  + c e t ~ J ~  -}- c+ (NO) (NO) -t-2m (NO) [2m Q ~  (NO) . +  

[ Q (co++> Q (02> Q(co>--t [ (co,> Q(cN>I + 
+ c e (CO) 'm (CO) -}- 2m (CO) m (CO)J -}- ce (CN) Q(CN) -}- 2m (CN) m (cm)J 

.+. ce (C)Q (co2) [ Q (co2) Q (c~) ] [ Q (co2) Q (Gs) ] 
re(C) +ce(Cs)  re(C) -(c2) +c+(C3) ~ ( - ~  ~(c3)  = 

= 3686% (0) -}- 8038% (N) + 716% (NO) -}- 2385% (CO) + 6999% (CN) + 21964% (C) -}- 

-}- 15999% (C2) -t- 13054% (Ca), [hal = cal/g,  (3.27) 
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o we can transform the heat  flux (3. ~6) as follows: 

~ ,~," (o) [L" '  Q (ox) 

Q (N:) t 0 (C),,) Q (Nz) Q (NO)] , 
q-ce(N)[L'"(N)--I]"-,'V(S~)- i "~'(NO) [ L m ( N O ) - -  l]~ Zm(NO) ~ (NU~ . I  -t- 

-sCe(CO)[L~(CO)--t]" n ' - ~  -{-2m((-~)  n[(( 'O) -SCe(CN)[Lm(CN)-- 
[(.)(COo-) ()(No-) Q ((:N) ] 

- -1 ]o  , ~ i ~  -4-2m(CN) - - (CN) -[ % ( ( ; ) [ f f a ( C ) _ _ t ]  ~ Q(CO~)m(C) -{- 

. ,  , [Q (co~) Q ((',2)] [ Q(C.) ] (3.28) "4-ce(C..,)[L ( ( .o-)-- l ]  i;;(~,)- (C:) -! ce(Cs)[Lm(C:d--tl~ Q(CO2) 
-- m (C) 'g CC3) 

where h e = he T+h d is the total enthalpy of the incident flow (stagnation enthalpy), and numerical values of the hears of 

reaction must be taken from (3.22). In order to calculate the generalized Lewis-Scmenov numbers in (3.2S), we first find 

t i le  e f f ec t ive  diffusion coeff ic ients  at the surface.  From (3 .10) ,  using (3 .25) ,  we get 

( /@)o ---- x(N2) x(CO,,) 
(i -~  N.,, COs) . 

Whence,  dropping the subscript 0 for s impl i c i ty ,  

D (i, N2) 
1)i := 1 + [D (i, N2) / D (i. CO2) - -  11 ,' (C().-) (i =r N2, CO.~) (3 .29)  

Thus, for T O =500,  1000, 2000~ respec t ive ly ,  we have :  

D (O, Ne) 1) (CO, No) 
D (N, No) -= 0.99[, 1.000, 0.995; D (C(}, C03) - -  1.279, t.255, 1.262 ; 

D (N, N2) D (NO, Nx) 
D(N,. COe) - -  t.220, 1.209, 1.215; 1) (Co, N2) - 1.040, t.022, t.025 ; 

D (0,  No) D (C~., N~) 
D I0,  COo-) 1.245, t.205, t '")5" - -  . . . .  ' D(t;,,, (;()o-) - -1 .256 ,  t.240, t.243 ; 

D (0,  N2) D iN(), No-) 
D (C, No-) := 0.895, 0.90.0, 0.907; "D (C3, No-) - -  t.290, t.258, t.259 ; 

D (C, N2) D (C3, No-) 
D (C, COs) - -  t.200, t .  I90, 1.186; D (C,:~, COx) --  1.320, 1.268, 1.250 ; 

D (NO, No-) D (NO, N~.) 
D (CO, No-)"-= 1.032, 1.013, t.013; D (O, No-) - -  0.748, 0.734, 0.735 ; 

D (NO, ND D (NO, N2) 
D(NO, COx,.) - -  1.315, 1.26t, 1.264, D (N, N2) " = 0.74t, 0.734, 0.731 . 

Therefore ,  for e x a m p l e ,  for To = 500~ we have :  

L (O) D (0) t -5 0.22x (CO2) 
L (N) = D (N-----~ = 0.991 t -5  0.24z (CO2) ~ 0.99 - -  0.97 

L (0) D (0) = 0.895 t + o.2o~ (cos) 
L (C----) ~- D (C------)" t + 0.24x (COs) - -  0.89 - -  0.87 

L(NO) D (NO) t + 0.279x (COs) 
L (CO) = D (CO) - -  t.032 t + 0.3t5z (CO2) == 1.03 - -  t .00 

L (NO) D (NO) i + 0.256x (COs) 
L (C2------~ = D (C2~ = t.040 t + 0.315x (CO2) = t . 04 - - t . 00  

L (NO) D (NO) t -5 0.32z (COa) 
L (C3) - -  D (Ca~ - -  1.29 1 -5 0.3t5x (COs) --= t .29 

Z (NO) D (NO) t -5 0.245x (COs) 
L(O)  ---- D ( O )  --  0"748 ~ -5 0.315x (CO2) = 0"75 - -  (1'7 ! 

L (NO)  D ( N O )  I -5 0.22x (CO2) 
L (N----~ '= D (N) - -  0.741 I + 0.3t5x (COs) - -  0. 74 - 0. 69. 

(3.30) 

(s.sl) 

Here the first values  correspond to  x (CO2) - 0 and the second to x (COg) = 1. By virtue of ( 3 . 3 0 )  we also get s imi la r  rat ios 
of the  g numbem for other surface t empera tu res .  I t  follows from (3 .31 )  that  in this par t icu lar  case there  are r ea l ly  only 
four s ign i f i can t ly  d i f ferent  L numbers :  
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L(C),  L (A) = L ( O )  = L  (N), L(M) = L ( N O )  = L  (CO) = L  (CN) : L (C,) L (Ca) . 

In each of these groups the L numbers differ by not more than 3 % for any surface temperature .  Moreover, upon dis- 
sociation of CO 2 the concentration of C a molecules is negl ig ible ,  so that without detr iment  to accuracy we can combine 
L (Ca) and L (M). Then the heat flux (3 .28)  can be reduced to the simpler form: 

= ' K ~  @ { 'e  - -  ho + I L"' (A)  - -  l],,~,~ - -  
dl e/' 

- L TM (a) [1 L ~ (C) ] Q (co~)_  Lm (A) [~ L m (M) 
L "~ (A) J % (C) ~ 7  L m (A) ] x 

[ e (Q) O (N2) Q (NO)).5 ", (CO)/q-0-(C~ O (0~) Q (CO) 
'4 % ( N 0 ) \ 2 ~ [ N D )  ~-'2m(NO) re(NO) \ re(C())  2re(CO) '~z(CO)) .5 

+ % (oN) { Q (c%) O (N~) (ON) 
\ r a ( C N ,  @2m(CN)  Q(CN~ ) ) q - % ( C 2 ) (  Q(COe)-n~ m -Q-(C~)(C=))@ 

+ % (c,) fQ (co ) ~ = g ' ( ~  
\ ,n(C) re(Ca) / J j  @ { h e - h ~  [ L m ( A ) - - i l ~  

.5 21 o64 % (c) L TM (A) d, i5  m - - i ) - -  [7i6% (NO) + 2385% (CO) -5 6999% (ON) -5 

-515999% (Ca) -513054% (Ca)l -5 Z m (A)(t  --0.73m)} (3.32) 

where the value of q" (O)/~l~/" must be taken from (2. 11) and that of h d from (3. 27). 

L (A) - -  pCpD (A) _ pspD (N, N ~) . p%D (N, Ns) (3 .33)  
s s  @(D(N,  N~)/D (N, C02) - -  1) x (C~)~)1 s 1t + 0.22x (CQ)] 

Using the data of [7] on the parameters of the interact ion forces for the Lennard-Jones potent ial ,  we find from (3 .33)  
that for a given surface temperature  the dependence of L (A) on x (COz) is prac t ica l ly  l inear (Fig. 2). 

In view of the low degree of separation of the starting composition of the in-  
cident flow at the surface and the re la t ive ly  weak dependence of L (A) on x (CO~), 
in computing L (A) from (3.33)  or Fig.  2 the value of x (CO 2) at the surface may 
be taken equal to its value in the incident  flow (ahead of the shock wave). 

Thus, taking values of L (A)from Fig. 2, we can compute the heat flux 

to the surface from (3 .32)  for any value of the inject ion parameter  and for any 
degree of dissociation of the incident  flow. For example ,  for the case of a flow 

consisting only of CO z comple te ly  dissociated to C and O atoms (T e > 6000~ 

from (3 .32)  we get :  

g' (0) "h - q = V'.~x~Pe ~t:/~ t e - ho + [L m (A) - -  t] h a .5 21964% (C) L m (A)[I.t5 m - -  t1, 

h a = 3686% (O) + 21 964% (C) ----- 8671 c a l / g ,  L (A) = t.69, To % t000 ~ K . 

tg, 7 ............... /.: - 

" , r ,  

Fig. 2. 

(3.34)  

We shall  now compare the specif ic  heat  flux at the stagnation point of a body flying in CO z with the heat flux to the 

same body flying in air.  For s impl ic i ty  we shall  assume that there is no inject ion and, for comparison, that for both a t -  

mospheres T o = const, h e = const, Pe = const. Dividing (3 .34)  by (3 .21) ,  we get:  

qco, __T~'rh , (l/~x-~Oe) co, (~ co.. )0.6 |/1,eco., }\~176 
q, - ~'o'h " r , ~ -  ( r  ' To= - -7-  , "rt= \ K / 

{h e - -  ho -~- [C ox' (a) - -  t1 h a + 21964 c e (C) C ~ (A) (1.t5 ~ - -  t)}co~. 

"rn = {h e _ ho .5 [L ~ (A) - - t l  ha - -  7t6 % (NO) to.6 (A) (t - -  0,73~ }. 

For 10 -a < p < 102 bar, we have:  

t % = 5 0 0  

T~z 

t000 

1.t6 

5000 

1.08 

10 0()0 t5 000 c a l / g  

1.02 1 
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L(A),--:I.31, L(A)co ~=1,69 for T0~500~ . 

We assume that at the outer edge of the boundary layer there is complete dissociation to C and O atoms in the carbon 
dioxide and to O and N atoms in the air. Then 

(ha) ~ = 7037cal/g,, (ha)co ' = 8670cal/g, 3;h ----: (he -~- 3950)/(h~ -~ 1223) . 

For example, 

"rh=t .27 for h e = 9 0 0  cal/g~ T h = t . 2 4  for he=50000  ca l /g .  

This increase in heat flux in CO9 as compared with air is primarily associated with the higher values of the energy of 
dissociation of unit mass of CO~ and the Lewis-Semenov number and the somewhat greater mobility of the C and O atoms 
as compared with the O and N atoms, and, to a lesser extent, with the difference in the values of gp at the outer edge of 
the boundary layer. 

Using the generalized analogy between the heat and mass transfer coefficients obtained in [10] for a boundary layer 
with an arbitrary pressure gradient, it is easy to conclude that the specific heat flux for flight in CO 2 gas will always be 
greater than that for flight in air for any point on the exposed surface. 
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